
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
Appendix B 

 

Source Code Tests  
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 The source code for the numerical solution to Equation (2), incorporating reverse particle 
tracking, was tested against a number of benchmark cases for which the solution was exactly 

known.  In addition, the simulations for these benchmark cases using reverse particle tracking 
were compared with simulations using the numerical schemes from two widely -applied water 
quality modeling packages, Water Quality for River-Reservoir Systems (WQRRS) (Smith, 1978) 

and QUAL2E (Brown and Barnwell, 1987). 
 
 

 
NUMERICAL METHODS 
 

 
Reverse Particle Tracking 
 

 Reverse particle tracking, the numerical method used in this study, is a mixed Eulerian-
Lagrangian scheme.  As described by Zhang et al (1993), the state variable is simulated in the 
advection step by sending a fictitious particle from each node, j (Figure 5), backward to the point,  
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where, 
 

 u* = velocity encountered by the particle while moving from x’ j to xj. 
 
 

WQRRS 
 
 The numerical method used in WQRRS is a finite difference Eulerian scheme that begins 

with the mass balance equation for a state variable, T, stated in matrix form as  
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where, 
 

   [V] = matrix with element volumes on the diagonal and zeroes elsewhere,  
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   [S] = Matrix of coefficients multiplies the state variable, T, 

 
   {T} = Vector of the state variable in each segment, 
 

 [P] = Vector of constant terms for each segment. 
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 Equation (B.2) is solved numerically by assuming 
 

  
 

 This leads to the following solution 
 
 

  
 

where, 
 
 

  
 

 
 

 
 
 

QUAL2E 
 
 QUAL2E (Brown and Barnwell, 1987) uses an upstream, implicit method to solve the 

finite difference equation for a state variable, T 
 
 

 
 

where, 
 
 Qj =  flow out of the jth element, 

 
 Vj =  volume of the jth element, 
 

 rj =  first order rate constant, 
 
 Pj =  internal sources in the jth element. 
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 Equation (B.5) does not include a term for longitudinal dispersion, as does the more 
general form of the equation found in the QUAL2E documentation (Brown and Barnwell, 1987). 
 

 
TEST CASES 
 

 
Test Case A 
 

 Test Case A is based on an idealized river system 100 miles long divided into 100 equal 
segments.  The longitudinal speed of the water is one mile/day.  The boundary condition at x=0 
for the state variable, T, is kept constant at 20 units and decays according to a first -order loss 

rate, K = 0.20.  In a Lagrangian frame of reference 
 
 

 
 

And in Eulerian frame of reference 
 
 

 
 

where, 
 
 

  U  =  (constant) longitudinal speed of the water. 
 
 

 The solutions to Test Case A, obtained with reverse particle tracking, WQRRS and 
QUAL2E are shown in Figure B.1. 
 

 
Test Case B 
 

 The geometry and hydrology for this case are the same as for Test Case A above.  The 
boundary for the state variable, T, is varied according to 
 

 

 
 

where, 
 
 

 P0 =   10, 20, 50, 100 days 
 
 

 The results from the various numerical schemes are shown in Figures B.2 – B.5. 
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Test Case C 
 
 Test Case C uses the same geometry and hydrology as the previous two test cases.  The 

boundary condition at X = 0 is defined as 
 
 

  T(t,x=0) = 20 u-1(t) 
 
 

Where, 
 
 u-1(t) =  the generalized function such that  T(t,x=0) =   0    for t<0, 

 
        T(t,x=0) =   1    for t>0. 
 

 
 Results of simulations are shown in Figure B.6. 
 

 
Test Case D 
 

 Test Case D is similar in all respects to Test Case B, with the exception that the 
segments used to describe the system are unequal and the periods associated with the harmonic 
functions describing the boundary conditions are 

 
 
 P0 =   5, 10, 20, 50 days. 

 
 
Segment 1 (the most upstream segment) is 0.5 miles in length, Segment 2 is 1.0 miles in length, 

Segment 3 is 1.5 miles in length, Segment 4 is 0.5 miles in length, Segment 5 is 1.0 miles in 
length, Segment 7 is 1.5 miles in length, the pattern repeating in this way for the entire length of 
the idealized system.  The simulation results for this case are shown in Figures B.7 – B.10. 

 
 
Test Case E 

 
 Test Case E is developed from solutions to the linearized form of the thermal energy 
budget equation (Edinger et al, 1974).  In Lagrangian form,  

 
 

 

 
And in Eulerian form, 
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where, 
 

 
  K =   a first-order rate constant which is a function of meteorological 
        parameters and water depth, 

 
  Tequil =   water temperature at which there is no heat transfer across the 
        the air-water interface, 

 
 

   =   T sin (2 t/ P) + Tav g. 

 
 
 The Laplace transform gives the following solution 
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where, 

 
 T0 =   boundary condition at x = 0 
 

 

  =   T0 sin (2  t/ P0) + T0 av g, 
 

 

  =   2 / P





  =   x/U. 
 

 
 Simulations were done for specific cases in which 
 

 

 T0 =   10, 
 

 T0 av g =   10, 
 

 T =   10, 

 
 Tav g =   15, 
 

 P =   360, 

 

 P0 =  5, 10, 20, 50, 

 
 x/U =   5. 
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 The results are shown in Figures B.11 – B.14. 
 
 

 
DISCUSSION 
 

 
 For the Test Case A, the steady-state problem with a first-order decay constant, K 
(Figure B.1), all three methods differ slightly from the exact solution.  This error is a function of the 

ratio of the integration time step to the time constant (1/K).  Reducing this ratio will also reduce 
the errors in all simulations. 
 

 Test Cases B – E provide indications of model performance in propagating high 
frequencies when advection is important.  The reverse particle tracking method gives nearly exact 

solutions when the Courant number, U x/t, is equal to one (Test Cases, B, C, and E).  For the 

case when the Courant number is not always equal to one (Test Case D), reverse particle begins 
to show the effects of numerical dispersion when the period, P0 = 10 or lower. 
 

 Numerical dispersion is evident in simulations using WQRRS and QUAL2E for all test 
conditions including those where the Courant number is equal to one.  In Test Cases B, C and D, 
the effects of numerical dispersion on amplitudes are severe when the period, P0 = 20 or lower.  

WQRRS has somewhat better high-frequency response than QUAL2E, however.  Both amplitude 
and phase of QUAL2E and WQRRS simulations are affected in Test Case E.  


